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Improvements to Heapsort:

An (implicit binary) heap is an array h of real numbers representing a heap-ordered binary tree: the two children of position 
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 are 
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; the value in a position is no smaller that that in the parent position, so that a smallest value is in position 1.

Algorithm for converting an arbitrarily-ordered array into a heap in linear time:

We use a recursive procedure heapify(
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), where k is the root of a subtree to be heap-ordered.  The size of the heap, n, is a global parameter.  To heapify the entire heap, we perform heapify(1).

heapify(
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); if 
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then begin heapify(
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); heapify(
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); siftdown(
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) end  

Here siftdown is the classical update operation used to restore heap order after a deletion. 

siftdown(
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): if 
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 then if 
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 then 
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h(2k) := h(2k), 
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 else if 
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then begin if 
[image: image16.wmf]h(2k)(2k+1)

£

then if 
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then begin
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 h(2k) := h(2k), h(k); siftdown(2k)end else if h(k) > h(2k + 1) then begin
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 h(2k + 1)       := h(2k + 1), 
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 siftdown
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 end end

If 
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 is the maximum number of comparisons needed to heapify an array of size n by this method, then T satisfies the following recurrence: 


[image: image23.wmf]T(n)2T(n/2)+O(logn),
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which implies 
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Exercise (a la COS 341): compute the exact number of comparisons used by heapify, as a function of n.

The classical way to do a deletemin operation on a heap is to remove the value in position 1 (returning it), move the value in position n into position 1, decrease n by 1, and do siftdown(1).  This takes about 
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comparisons.  The constant factor can be reduced from 2 to 1 (plus a smaller-order term) by instead removing the value in position 1, creating a hole, and sifting the hole to the bottom of the heap.  By treating the hole as a value of infinity and avoiding explicit comparisons with infinity, the number of comparisons for the siftdown is about 
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 Now the value in position n is moved to fill the hole, n is decreased, and a siftup of the new value is done.  If the siftup is done purely bottom-up, then the worst-case number of comparisons is about 
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saving nothing, but the average number of comparisons is 
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(for an appropriate probability distribution), saving a constant factor on comparisons.  Alternatively, one can use binary search on the siftup path, taking about 
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comparisons, to find the correct position for the item being sifted up.  With this method the worst-case number of comparisons is about 
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  This does not count the number of data moves necessary to rearrange the values into heap order, which remains about 
[image: image31.wmf]lgn

 in the worst case.  Still, a constant factor is saved in the time for a deletemin.

Programming project: Compare various improved versions of heapsort with one or more versions of quicksort.  Under what circumstances might you expect heapsort to be faster than quicksort? Slower?  Do your experimental results agree with your hypotheses?

Linear-Time Selection:

The problem is to compute the median of a set of n real numbers, or more generally to compute the 
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smallest.  For simplicity assume that all the numbers are distinct.  The key idea in solving this problem is to use the key idea in quicksort, of splitting the problem in two.  In quicksort, we choose a splitter, compare all the numbers to the splitter, and separately sort the set of numbers smaller than the splitter and the set of numbers larger than the splitter, applying the method recursively to sort each subset.  To select, we need recur only on one subproblem, the one containing the desired element.  If we can guarantee that both subsets contain at most an numbers, for some constant a 
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 then we get a recurrence for the time to do selection that has a linear upper bound.  The difficulty is finding a sufficiently good splitter in linear time.

To help find a good splitter, we use selection recursively in a different way.  This is the main trick (or subtlety) in the algorithm.  The recurrence bounding the running time ends up having two recursive terms instead of one, but the total size of the two recursive subproblems is still a fraction less than one of n, and the time spent outside of the recursions is linear.  The result is an algorithm for selection with a worst-case linear running time.

As for the details… to select the 
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smallest of a set of n numbers, if n is sufficiently small just sort.  Otherwise, partition the numbers (arbitrarily) into groups of size 5; at most one group will have fewer than 5 elements.  Find the median of each group.  Since each group is of constant size, the time per group is constant, and the time for all groups is
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  We can do this by sorting each group, or we can use an optimum algorithm. Next, find the median of the medians of the groups, by applying the selection algorithm recursively.  More precisely, if there are 
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 groups, find the 
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smallest of the medians of the groups, say
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.  Use
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 as a splitter; that is, divide the elements into those larger than
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 and those less than
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  Based on the value of k and the number of elements less than
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 and greater than
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, either return 
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 as the 
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smallest element or recur on the set of elements smaller than
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 or on the set of elements larger than
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To analyze this algorithm, note that 
[image: image48.wmf]m=n/5n/5+1.

£

éù

êú

  Also, both the number of elements less than or equal to x, and the number of elements greater than or equal to
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 is at least
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  (Why?)  Thus if 
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 is the time required to solve a selection problem on n or fewer elements, 
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 for 
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 exceeding a constant.  Since 
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By carefully looking at the constants in this method and dealing carefully with small cases, one can show that selection can be done in 
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 comparisons in the worst case.  A completely different and more-complicated method gives a 3n bound on comparisons.  There is a
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lower bound.  Relatively recently, the upper bound was improved to
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.

If we are happy with a randomized algorithm, there is an alternative method that uses random sampling and takes 
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 expected comparisons (ignoring lower-order terms), which is best possible. 
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